Environmental Concentrations of the Type 2 Diabetes Medication Metformin and Its Transformation Product Guanylurea in Surface Water and Sediment in Ontario and Quebec, Canada

Author:

Littlejohn Cameron12,Renaud Justin B.1,Sabourin Lyne1,Lapen David R.3,Pappas Jane J.4,Tuteja Bindu4,Hughes Dianne4,Ussery Erin5,Yeung Ken K.‐C.26,Sumarah Mark W.12ORCID

Affiliation:

1. London Research and Development Centre Agriculture and Agri‐Food Canada London Ontario Canada

2. Department of Chemistry Western University London Ontario Canada

3. Ottawa Research and Development Centre Agriculture and Agri‐Food Canada Ottawa Ontario Canada

4. New Substances Assessment and Control Bureau Safe Environments Directorate, Health Canada Ottawa Ontario Canada

5. Aquatic Contaminants Research Division Environment and Climate Change Canada Burlington Ontario Canada

6. Department of Biochemistry Western University London Ontario Canada

Abstract

AbstractMetformin, used to treat Type 2 diabetes, is the active ingredient of one of the most prescribed drugs in the world, with over 120 million yearly prescriptions globally. In wastewater‐treatment plants (WWTPs), metformin can undergo microbial transformation to form the product guanylurea, which could have toxicological relevance in the environment. Surface water samples from 2018 to 2020 and sediment samples from 2020 were collected from six mixed‐use watersheds in Quebec and Ontario, Canada, and analyzed to determine the metformin and guanylurea concentrations at each site. Metformin and guanylurea were present above their limits of quantification in 51.0% and 50.7% of all water samples and in 64% and 21% of all sediment samples, respectively. In surface water, guanylurea was often present at higher concentrations than metformin, while the inverse was true in sediment, with metformin frequently detected at higher concentrations than guanylurea. In addition, at all sites influenced solely by agriculture, concentrations of metformin and guanylurea were <1 µg/L in surface water, suggesting that agriculture is not a significant source of these compounds in the investigated watersheds. These data suggest that WWTPs and potentially septic system leaks are the most likely sources of the compounds in the environment. Guanylurea was detected at many of these sites above environmental concentrations of concern, where critical processes in fish may be affected. Due to the scarcity of available ecotoxicological data and the prominence of guanylurea across all sample sites, there is a need to perform more toxicological investigations of this transformation product and revisit regulations. The present study will help provide toxicologists with environmentally relevant concentration ranges in Canada. Environ Toxicol Chem 2023;42:1709–1720. © 2023 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Agriculture and Agri‐Food Canada.

Funder

Health Canada

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3