6‐3: Identifying the Detail Reason of Pixel Defect via Machine Learning Method

Author:

Han Jun Hee1,Jeong Yoonseob1,Chun Minkyu1,Park Yong Min1,Yoon Sang Won1,Kim Young Mi1,Yang Joon-Young1,Yoon Sooyoung1

Affiliation:

1. LG Display Co., LTD LG Science Park Seoul Korea

Abstract

Various studies have been conducted to automatically inspect defective products. Those technologies already can detect defective pixels better than humans and have been improved enough to detect Mura defect, which is rarely detected by the auto detecting systems. It is as important to determine the cause of the defect as to detect it. However, efforts to automatically identify the cause of the defect have yet to show significant results. In this study, a method to determine the cause of defect with machine learning is introduced.

Publisher

Wiley

Subject

General Medicine

Reference11 articles.

1. "16‐4: Invited Paper: Region‐Based Machine Learning for OLED Mura Defects Detection.";Lee Janghwan;SID Symposium Digest of Technical Papers,2021

2. "72‐1: In‐Line Mura Detection using Convolutional Neural Network in Display Manufacturing.";Tomita Satoru;SID Symposium Digest of Technical Papers,2022

3. "72‐3: Deep Learning Based Visual Defect Detection in Noisy and Imbalanced Data.";Cheng Qisen;SID Symposium Digest of Technical Papers,2022

4. An antagonistic training algorithm for TFT- LCD module mura defect detection;Lin Guimin;Signal Processing: Image Communication,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3