First‐principles study on the CH4 adsorption performance of Mn‐modified N‐doped graphdiyne

Author:

Chen Zhiwei1,Zhao Qiuyu1,Chen Yuhong12ORCID,Sun Jialin1,Zhang Meiling1,Sang Cuicui1,Zhang Cairong12

Affiliation:

1. School of Science Lanzhou University of Technology Lanzhou 730050 China

2. State Key Laboratory of Advanced Processing and Recycling of Non‐Ferrous Metals Lanzhou University of Technology Lanzhou 730050 China

Abstract

AbstractNGDY has high‐N atom doping rate, many active sites, large pore size, outstanding thermal stability, and excellent lithium‐ion storage properties. The mixed adsorption of the Mn‐modified NGDY (Mn‐NGDY) system has been studied with the first principles approach, which shows the effects and the mechanism of action about the modified Mn atom and H2 molecules on the adsorption of CH4. From the results, more electrons are transferred from the Mn atom to the neighboring six‐membered ring, making the Mn atom positively charged and forming a strong Coulomb interaction with the substrate. There is Coulomb interaction between the first two methane molecules and Mn atoms, and CH4 molecules have strong polarization phenomenon under this interaction, which causes the surrounding CH4 molecules of the first layer (The CH4 molecules around the first two CH4 molecules) inducing polarization along the XY plane (parallel substrate), and the surrounding CH4 molecules of the second layer inducing polarization along the Z‐axis direction, which improve the adsorption properties of other CH4 molecules. In the first layer, the interaction forces of the adsorbed CH4 molecules region mainly come from the interaction forces between CH4 and the substrate, and the interaction forces between CH4 molecules dominate in the adsorption of second layer. Polarization of H2 molecules along the Z‐axis direction causes the formation of a weak negative center above it, which promotes the adsorption of CH4 molecules above it. For the 2Mn‐NGDY system, a maximum of 72 CH4 molecules and 4 H2 molecules can be adsorbed simultaneously on both sides, when the average adsorption energy and adsorption amount reach −0.169 eV and 73.41 wt%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3