Multi‐index characterization of compound dry hot events in India

Author:

Prabhakar Anagha1ORCID,Mitra Subhasis1ORCID,Varghese Femin C.1ORCID

Affiliation:

1. Department of Civil Engineering Indian Institute of Technology Palakkad Palakkad India

Abstract

AbstractCompound dry hot events (CDHEs), where hot events and droughts coexist, have received a lot of attention lately due to their catastrophic effects on the economy, environment and human health. In this study, we use two CDHE indices, the Standardized Compound Event Indicator (SCEI) and the Standardized Dry and Hot Index (SDHI), to assess changes in CDHE characteristics (severity, frequency, spatial extent) over the historical past and future CMIP6 simulations across the Indian subcontinent. To understand the role of the drought index selected on CDHE characterization two drought indices namely the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) are employed in the calculation of the CDHE indices. Further, the role of climatic oscillations such as El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Equatorial Indian Ocean Monsoon Oscillation and Indian Ocean Dipole in modulating CDHE characteristics have also been explored. Results show that SPI and SPEI based CDHE indices exhibit contrasting trends in northern India, while similar trends are observed in southern India in the historical past. Also, more frequent, extended, and severe CDHEs are reported by CDHE indices calculated using SPEI than by SPI. Temperature is found to be the dominant factor contributing to increases in CDHEs in the recent past and ENSO phases significantly modulate the severity and frequency of CDHE events in India. CMIP6 simulations generally report an increase in CDHE events for a 3°C global warming scenario. Overall, our findings show that the choice of the drought index has a greater impact on CDHE characterization than the choice of the CDHE index itself. Results from this study provide useful information towards understanding the risk of CDHEs in India under global warming and urge for the development and implementation of adaptation and mitigation measures.

Funder

Kerala State Council for Science, Technology and Environment

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3