Angiopoietin‐like protein 3 promotes colorectal cancer progression and liver metastasis partly via the mitogen‐activated protein kinase 14 pathway

Author:

Wang Yuexia1,Yi Yi1,Pan Shengli1,Zhang Yuhao1,Fu Jun1,Wu Xiaolin2,Qin Xianju1

Affiliation:

1. Department of General Surgery Jiangsu University Affiliated Shanghai Eighth People′s Hospital Shanghai China

2. Central Laboratory Jiangsu University Affiliated Shanghai Eighth People′s Hospital Shanghai China

Abstract

AbstractColorectal cancer (CRC) remains one of the most common malignancies worldwide, and liver metastasis represents a considerable challenge during CRC treatment. Aberrant expression of angiopoietin‐like protein 3 (ANGPTL3) has been reported in several human cancer types. However, the function and mechanism of ANGPTL3 in CRC remain unclear. In this study, we first explored ANGPTL3 expression profiles in CRC datasets from ONCOMINE and in local samples from patients with CRC. We then elucidated the function of ANGPTL3 via knockdown and overexpression experiments. Bioinformatic analyses were performed to investigate the biological function and associated molecular mechanisms of ANGPTL3 in CRC oncogenesis and development. Finally, a xenograft model of liver metastasis was used to determine the role of ANGPTL3 in CRC metastasis. Our findings indicated that ANGPTL3 expression was upregulated in human CRC tissues, with high ANGPTL3 expression significantly correlated with poor survival of patients with CRC. ANGPTL3 overexpression promoted the proliferation and migration of CRC cells partially through mitogen‐activated protein kinase 14 (MAPK14), while ANGPTL3 silencing had the opposite effect. Moreover, ANGPTL3 downregulation suppressed tumor growth and liver metastasis in xenograft mice. Collectively, the results presented here indicate that ANGPTL3 promotes cell proliferation and liver metastasis partly via MAPK14, suggesting that ANGPTL3 plays a tumor‐promoting role in CRC progression and thus may represent a therapeutic target for CRC treatment.

Funder

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

Cancer Research,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3