Thermal energy storage of phase change materials in the solidification process inside the quasi‐square heat exchanger: CFD simulation

Author:

Asgari Mehdi1,Javidan Mohammad1,Hassankolaei Mosayeb Gholinia1ORCID,Nozari Mohammad2,Asgari Aliasghar3,Ganji Davood Domiri1

Affiliation:

1. Department of Mechanical Engineering Babol Noshirvani University of Technology Babol Iran

2. Department of Chemistry Drexel University Philadelphia USA

3. Department of Mechanical Engineering Shiraz University Shiraz Iran

Abstract

AbstractThe high latent heat of phase change materials (PCMs) makes them one of the most important sources of heat energy storage systems. However, due to the slow rate of heat transfer in these materials, using conductive materials such as fins and nanoparticles could improve the thermal efficiency of these energy storage systems. So in this article, cross‐shaped fins and Copper(II) oxide nanoparticles with different synthesized forms and various volume fractions have been employed to increase the thermal efficiency of paraffin PCMs. In this simulation, three fin models based on the installed size, the shape of the synthesized nanoparticles in brick, cylindrical, and platelet forms, and the nanoparticle volume fraction of the Copper(II) oxide is 1%–4% are studied. Increasing the volumetric ratio of nanoparticle and shape coefficient decrease the time of solidification, while increasing the length of the cross‐shaped fins raises the solidification rate and improves heat transfer. Finally, it was found that when the inner and outer walls play a role in the solidification process at the same time, the solidification rate will increase by more than 66% as more zone of the surface is exposed to cold.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3