Reversible electronic modulation of polydiacetylenes for sensing in dynamic conditions

Author:

Beliktay Gizem1,Ozer Aybuke B.1,Cingil Hande E.2ORCID,Tan Eric M. M.12

Affiliation:

1. Faculty of Engineering and Natural Sciences Sabanci University Istanbul Turkey

2. Sabanci University Nanotechnology Research and Application Center (SUNUM) Istanbul Turkey

Abstract

AbstractPolydiacetylenes (PDAs) are renowned for their exceptional optical properties intricately linked to the polymer conformation, yet they exhibit poor conductivity in their undoped state. Despite this drawback, PDAs have garnered significant interest as sensing materials owing to their ability to undergo colorimetric shifts from blue to red in response to external stimuli. However, the irreversible nature of this transition has limited their utility in dynamic environments. In this study, we augment the sensing capabilities of PDA films beyond their irreversible optical response by inducing a reversible electronic response through conductivity modulation. We investigated polyamine‐substituted PDAs with enriched hydrogen‐bonding interaction sites for the concurrent changes in colorimetry and conductivity upon acetic acid (AA) vapor exposure. Coated on a flexible interdigitated electrode (IDE), we monitor the conductivity change throughout the blue‐to‐red phase transition. Remarkably, AA molecules act as dopants, significantly amplifying the system's conductivity. Although the PDA coating retains its red phase at postdopant removal, the electronic response reverts to its initial state, demonstrating reversibility. This reversible electronic response offers invaluable real‐time insights into the specific triggers within dynamic environments, underscores the adaptability of responsive conjugated polymers, and highlights a promising avenue for their utilization in various sensing and monitoring applications.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3