A moisture budget perspective on Australian rainfall variability

Author:

Pariyar Sunil Kumar1ORCID,Liguori Giovanni12ORCID,Jakob Christian13,Singh Martin S.13,Reeder Michael J.13,Barnes Michael A.13ORCID

Affiliation:

1. School of Earth, Atmosphere and Environment Monash University Clayton Victoria Australia

2. Department of Biological, Geological, and Environmental Sciences (BIGEA) University of Bologna Bologna Italy

3. ARC Centre of Excellence for Climate Extremes Sydney New South Wales Australia

Abstract

AbstractRainfall variability over Australia is revisited from the viewpoint of the atmospheric moisture budgets in three regions: the extratropics, Subtropics, and Tropics. The budgets are calculated using three‐hourly European Centre for Medium‐Range Weather Forecasts Reanalysis v5 (ERA5) and ERA5‐Land data between 1979 and 2022. The use of the moisture budget at short time‐scales enables the investigation of the relationship between synoptic weather‐scale processes and the longer term variability of the rainfall climate. The total variability in the vertically integrated moisture flux divergence (VIMD) is significantly larger than the evaporation minus precipitation (E − P), to a large extent due to the sub‐daily time‐scales. E − P is related more closely to moisture flux convergence in winter (summer) over south (north) Australia, suggesting a clear seasonality in the relationship between the two budget terms. The E − P–VIMD relationship is nearly in phase in the Tropics, whereas VIMD leads E − P by 9–15 hr with eastward‐propagating signals in the extratropics and Subtropics. Such seasonal and regional discrepancies in the relationship are attributed to the background state of moisture availability and temperature as represented by relative humidity and lifting condensation levels. The variability of the budget imbalance and its seasonality are dominated by the variability in VIMD. The imbalance reduces rapidly with temporal smoothing, with the storage term approaching zero at approximately 20 days, which can be thought of as making a transition time‐scale from high‐frequency weather‐related variability into slow‐varying background conditions. Weather‐related variability (cyclones, fronts, and thunderstorms) dominates the overall E − P variability in the extratropics and Subtropics, whereas slow‐varying background conditions contribute equally to the total variability in the Tropics.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3