Patterns of riparian forest disturbance caused by tree dislodging on a subtropical river during large floods

Author:

Sharpe Richard1ORCID,Brooks Andrew1,Olley Jon2,Kemp Justine1

Affiliation:

1. Coastal and Marine Research Centre Griffith University Gold Coast Queensland Australia

2. Australian Rivers Institute, Griffith University Brisbane Queensland Australia

Abstract

AbstractRiparian forests contribute to the resilience and biocomplexity of floodplains but may be catastrophically impacted by large floods. Forest disturbances will expose floodplains to stripping and pulses of large wood recruitment to the floodplain and channel. The widespread uprooting of trees follows hydrodynamic loading from floodwaters and the associated moments of these forces about the tree bases. A tree will uproot when the drag moment exceeds the anchorage resistance capacity. Alternatively, trunks will rupture when the tensile stresses caused by bending exceed the tensile strength of the outer trunk fibres. The likelihood and pattern of trees dislodging during floods on a subtropical river was investigated by developing a tree stability model. The modeling framework included development of a drag moment model and testing several potential formulations for anchorage resistance. Model parameters were calibrated to data collected in experiments and from observations in aerial photographs before and after a large flood in 2011. The prediction accuracy for the adopted tree stability model was 78%. Results from design flood simulations suggest that less than a third of the forest will dislodge even during the largest floods conceivable. This remarkable stability moderates the quantity of large wood recruited from riparian forests during extreme floods, which can impact infrastructure such as bridges and culverts downstream. Low rates of wood recruitment from dislodged floodplain trees in extreme floods suggests bank erosion is the dominant source of wood recruitment in these catchments.

Funder

Australian Government

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3