Engineering of Dominant Active Basic Helix-Loop-Helix Proteins That Are Resistant to Negative Regulation by Postnatal Central Nervous System Antineurogenic Cues

Author:

Geoffroy Cédric G.1,Critchley James A.2,Castro Diogo S.2,Ramelli Sandra1,Barraclough Christelle3,Descombes Patrick3,Guillemot Francois2,Raineteau Olivier14

Affiliation:

1. Brain Repair Centre, University of Cambridge, Cambridge, United Kingdom

2. Division of Molecular Neurobiology, National Institute for Medical Research, London, United Kingdom

3. Genomics Platform, NCCR Frontiers in Genetics, University of Geneva CMU, Geneva, Switzerland

4. Brain Research Institute, University of Zurich/ETH, Zurich, Switzerland

Abstract

Abstract Neural precursor cells (NPCs) are present in most regions of the adult central nervous system (CNS). Using NPCs in a therapeutical perspective, that is, to regenerate CNS tissue after injury or in neurodegenerative diseases, will require the efficient manipulation of their fate. Proneural gene overexpression in NPCs represents a promising strategy to promote neuronal differentiation. The activity of the proneural proteins is, however, context-dependent and can be inhibited/modulated by binding with other bHLH (basic helix-loop-helix) or HLH transcription factors. In this study, we show that the two proneural proteins, Ngn2 and Mash1, are differentially sensitive to negative regulation by gliogenic factors or a gliogenic substrate (i.e., postnatal spinal cord slices). Coexpressing E-proteins with proneural proteins was efficient to rescue proneural proteins neurogenic activity, suggesting a central role for E-protein sequestration in mediating postnatal CNS gliogenic inhibition. Tethering of proneural proteins with E47 further insulated Mash1 from negative environmental influences whereas this strategy was not successful with Ngn2, suggesting that mechanisms of inhibition differ in between these two proneural proteins. Our results demonstrate that a better understanding of proneural protein modulation by environmental cues is a prerequisite to develop innovative approaches that will permit the manipulation of the fate of NPCs in the adult CNS after trauma or disease. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

Medical Research Council

European Commission Research and Technological Development program

Dr Scholl Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3