Seasonal variations in rain cells propagation over Central Africa and association with diurnal rainfall regimes

Author:

Camberlin Pierre1ORCID,Moron Vincent23,Philippon Nathalie4,Mengouna François Xavier5,Vondou Derbetini A.5ORCID

Affiliation:

1. Biogéosciences/CRC, Université de Bourgogne/CNRS Dijon France

2. Aix‐Marseille University, CNRS, IRD, INRAE Collège de France CEREGE Aix‐en‐Provence France

3. International Research Institute for Climate and Society, Lamont‐Doherty Earth Observatory, Columbia University Palisades New York USA

4. Institut des Géosciences de l'Environnement, UGA, CNRS, IRD, Grenoble INP Grenoble France

5. Laboratory for Environmental Modelling and Atmospheric Physics (LEMAP), Department of Physics, Faculty of Science University of Yaounde 1 Yaounde Cameroon

Abstract

AbstractThree‐hourly data from two satellite rainfall estimates products, PERSIANN and TMPA, are analysed to document the seasonal patterns of diurnal rainfall distribution over the Congo Basin and neighbouring areas. PERSIANN data for 2001–2017, at a one‐hour time‐scale, are further used to identify rain cells (≥4 mm·h−1) in an attempt to explain the diurnal rainfall variations. Over land areas, an afternoon rainfall maximum is clearly shown, but over much of the region only a minor part of the rains (20%–30%) falls in the wettest 3‐h period. Substantial rains (often 50%–60%) occur in the evening and at night, as a progressively delayed peak from east to west, but a seasonal change is found in the meridional propagation of the peak diurnal rainfall, in a south‐westerly direction in January, and a north‐westerly direction in July. Rain cells have prominent genesis areas west of high terrain, but can develop over most regions, with a peak genesis time slightly ahead the diurnal phase of the rains. The size, mean lifetime and mean rainfall intensity of the rain cells are strongly related to each other and display a semi‐annual cycle not fully in phase with the seasonal cycle of the rains. The mean rain cell propagation speed (6.7 m·s−1) is much lower than in previous studies, which focused on mesoscale convective systems. Rain cells which have a longer lifetime move much faster, the mean speed of those lasting less than 6 h being half that of those lasting at least 24 h. Most (86%) of the mobile rain cells propagate westward, but the meridional component of their propagation shows an annual cycle (southward in austral summer, northward in boreal summer) which matches the mid‐tropospheric winds and explains the seasonal changes in the diurnal rainfall peak.

Funder

Institut national des sciences de l'Univers

Centre National d’Etudes Spatiales

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3