Efficient sensitivity analysis for biomechanical models with correlated inputs

Author:

Hilhorst Pjotr L. J.1ORCID,Quicken Sjeng1ORCID,van de Vosse Frans N.1ORCID,Huberts Wouter12ORCID

Affiliation:

1. Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands

2. CARIM School for Cardiovascular Diseases, Biomedical Engineering Maastricht University Maastricht The Netherlands

Abstract

AbstractIn most variance‐based sensitivity analysis (SA) approaches applied to biomechanical models, statistical independence of the model input is assumed. However, often the model inputs are correlated. This might alter the interpretation of the SA results, which may severely impact the guidance provided during model development and personalization. Potential reasons for the infrequent usage of SA techniques that account for input correlation are the associated high computational costs, especially for models with many parameters, and the fact that the input correlation structure is often unknown. The aim of this study was to propose an efficient correlated global sensitivity analysis method by applying a surrogate model‐based approach. Furthermore, this article demonstrates how correlated SA should be interpreted and how the applied method can guide the modeler during model development and personalization, even when the correlation structure is not entirely known beforehand. The proposed methodology was applied to a typical example of a pulse wave propagation model and resulted in accurate SA results that could be obtained at a theoretically 27,000× lower computational cost compared to the correlated SA approach without employing a surrogate model. Furthermore, our results demonstrate that input correlations can significantly affect SA results, which emphasizes the need to thoroughly investigate the effect of input correlations during model development. We conclude that our proposed surrogate‐based SA approach allows modelers to efficiently perform correlated SA to complex biomechanical models and allows modelers to focus on input prioritization, input fixing and model reduction, or assessing the dependency structure between parameters.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics;International Journal for Numerical Methods in Biomedical Engineering;2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3