Protocol to record and analyze primate leaping in three dimensions in the wild

Author:

Janisch Judith1ORCID,Kirven Jack12,Schapker Nicole13ORCID,Myers Lydia C.4,Shapiro Liza J.4,Young Jesse W.1

Affiliation:

1. Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio USA

2. Department of Biology University of Akron Akron Ohio USA

3. School of Biomedical Sciences Kent State University Kent Ohio USA

4. Department of Anthropology University of Texas at Austin Austin Texas USA

Abstract

AbstractSeveral studies comparing primate locomotion under lab versus field conditions have shown the importance of implementing both types of studies, as each has their advantages and disadvantages. However, three‐dimensional (3D) motion capture of primates has been challenging under natural conditions. In this study, we provide a detailed protocol on how to collect 3D biomechanical data on primate leaping in their natural habitat that can be widely implemented. To record primate locomotion in the dense forest we use modified GoPro Hero Black cameras with zoom lenses that can easily be carried around and set up on tripods. We outline details on how to obtain camera calibrations at greater heights and how to process the collected data using the MATLAB camera calibration app and the motion tracking software DLTdv8a. We further developed a new MATLAB application “WildLeap3D” to generate biomechanical performance metrics from the derived x, y, z coordinates of the leaps. We provide details on how to collect data on support diameter, compliance, and orientation, and combine these with the jumps to study locomotor performance in an ecological context. We successfully reconstructed leaps of wild primates in the 3D space under natural conditions and provided data on four representative leaps. We provide exemplar data on primate velocity and acceleration during a leap and show how our protocol can be used to analyze segmental kinematics. This study will help to make motion capture of freely moving animals more accessible and help further our knowledge about animal locomotion and movement.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3