A novel optimized fractional order system for tuning biological parameters

Author:

Sahu Tapaswini1,Tripathy Madhab Chandra2,Jena Ranjan Kumar3

Affiliation:

1. Department of Electronics and Telecommunication Engineering BPUT Rourkela India

2. Department of Instrumentation & Electronics Engineering CET (Now OUTR) Bhubaneswar India

3. Department of Electrical Engineering CAPGS, BPUT Rourkela India

Abstract

AbstractIn contemporary biological research and applications, control systems have become indispensable for understanding and managing the intricate dynamics of the human biological system. Given the critical role of components such as the pancreas structure, protein formation, insulin and glucose regulation, and the genetic regulatory network (GRN), any disturbances in these systems can lead to severe health issues. To overcome these issues, to introduced a novel hybrid controller called the fuzzy lion‐based optimized fractional order system (FL‐OFOS) for evaluating the performance of the system. This controller aims to efficiently govern and regulate key components of the human biological system, including insulin dynamics, protein synthesis, pancreas functionality, and GRN management. The controller is specifically tailored to regulate insulin, protein synthesis, pancreas function, and GRN dynamics within the human biological system. The optimization of biological parameter values is achieved through the incorporation of the fuzzy lion function. The results of this study highlight the efficacy of the FL‐OFOS controller in optimizing and regulating various biological parameters. The system demonstrates minimal error rates, rapid response times, reduced overshoot, and high control precision and accuracy. The proposed controller achieves a minimal error rate of 0.98%, with only minor overshoot occurring in the outcomes. As a result, the FL‐OFOS controller offers substantial gains and delivers optimal results in the realm of biological systems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3