A multilayer neural‐network‐based fault estimation and fault tolerant control scheme for uncertain system

Author:

Akhtar Zainab1,Naqvi Syed Zilqurnain Abbas1,Hamayun Mirza Tariq2,Ijaz Salman3

Affiliation:

1. Department of Mechatronics Engineering University of Engineering and Technology Lahore Pakistan

2. Department of Electrical and Computer Engineering COMSATS University Islamabad, Lahore Campus Lahore Pakistan

3. Key Laboratory of More Electric Aircraft and Member of Control System Laboratory University of Nottingham Ningbo China Ningbo China

Abstract

AbstractThis work introduces a new actuator fault estimation approach coupled with a fault‐tolerant control (FTC) strategy for uncertain systems in an output feedback framework. The proposed method involves constructing a Multi‐Layer Neural Network (MLNN) observer‐based fault estimation unit to accurately predict system states and potential faults in the actuator channel. An online control allocation (CA) scheme is then developed, utilizing the derived estimates to actively reconfigure the virtual control signals among the healthy redundant actuators in the event of actuator malfunction. Furthermore, an adaptive neural network‐based output integral sliding mode control scheme is designed based on the virtual control. This integration enhances the overall system's robustness and significantly reduces the chattering effect. The stability analysis of the proposed fault estimations scheme is initially performed using MLNN structure, followed by a comprehensive closed‐loop stability analysis to establish the stability of the entire system. Finally, the effectiveness of the proposed method is validated on a nonlinear six‐degree‐of‐freedom model of multirotor unmanned aerial vehicle aircraft. Numerical simulations under different fault and failure scenarios validate the efficacy of the proposed method. The comparative analysis of the proposed scheme is conducted with the static output feedback control allocations and adaptive allocation strategy. This analysis focuses on evaluating performance using metrics such as root mean square error and mean square deviation, particularly in the presence of faults and failures. The results demonstrate the superior performance of the proposed scheme in fault/failure conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3