Ionic liquid and ZnO/carbon quantum dots derived from cat hair as an electrochemical sensor for ciprofloxacin in food samples: Experimental and cell‐imaging studies

Author:

Leticia Almada‐Leyva M.1ORCID,Tecuapa‐Flores Eduardo D.2,Garcia Rojas Liliana Margarita1,Thangarasu Pandiyan1ORCID

Affiliation:

1. Facultad de Química Universidad Nacional Autónoma de México Cd. Universitaria 04510 México, D.F. México

2. División de Ingeniería en Nanotecnología Universidad Politécnica del Valle de México Av. Mexiquense s/n esquina Av. Universidad Politécnica, Tultitlán Estado de México CP 54910 México

Abstract

AbstractCiprofloxacin (CIP) has been widely used to treat bacterial infections, generating biofluid residues and it endangers health via the food chain; thus, the determination of CIP is essential in food samples. In this work, CPE/ZnO/CQD was prepared from ZnO nanoparticles (ZnO NPs) and carbon quantum dots (CQD) derived from cat hair and modified the graphite carbon paste electrode (CPE); the above electrode sample was further modified by incorporating ionic liquid (IL) to give CPE/ZnO/CQD@IL. The above materials were employed as electrochemical sensors for the recognition of CIP in milk and eggs after the characterization by different analytical techniques (XRD, FT‐IR, SEM, TEM, and EDS). The results show that the presence of nanoparticles in the CPE has improved the electrocatalytic properties, giving a greater heterogeneous electron transfer rate constant (k0=6.51×10−4 cm/s) for CPE/ZnO/CQD as compared to unmodified CPE (3.94×10−4 cm/s), and for CPE/ZnO/CQD/IL, with modification of sample by IL, the rate constant has been further increased to k0=8.34×10−4 cm/s. Thereafter, CPE/ZnO/CQD and CPE/ZnO/CQD@IL were employed for the detection of CIP in food samples such as milk and eggs, observing a maximum oxidation current for CIP at pH 3.0; the limit of detection (LOD) was 0.24, and 0.30 μM for CPE/ZnO/CQD, and CPE/ZnO/CQD@IL, respectively, and those values are much lower than those reported due to the synergistic effect generated by the combination of ZnO/CQD and IL. Furthermore, cell images were developed using ZnO/CQD and ZnO/CQD@IL in real samples like Saccharomyces cerevisiae cells in the presence of CIP.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3