Affiliation:
1. Department of Chemistry Colorado State University 1872 Campus Delivery Fort Collins, Colorado USA
2. School of Biomedical Engineering Colorado State University Fort Collins, Colorado USA
Abstract
AbstractCarbon composite electrodes often suffer from poor electrocatalytic activity and require complex, expensive, or time‐consuming modifications to effectively detect certain analytes such as O2 and H2O2. Thermoplastic electrodes (TPEs) are a new class of composite electrodes, fabricated by mixing commercial graphite with a thermopolymer, that exhibit superior electrochemical properties to typical carbon composite electrodes. This work investigates the properties of TPEs using two thermopolymer binders – polycaprolactone (PCL) and polystyrene (PS) – with sanded and heat‐pressed surface treatments. XPS and SEM analysis suggested that sanded TPEs have a higher density of graphitic edge planes and improved electrochemistry as a result. Electrochemical detection of O2 and H2O2 was demonstrated on sanded PS TPEs. Additionally, this work introduces the first use of a 3D‐printed TPE template as part of a 3D‐printed sensor module that is reversibly sealed with magnets as a proof‐of‐concept flow‐based sensor for detecting H2O2.
Funder
National Science Foundation
National Institutes of Health