Performance of an aptamer‐based neuropeptide Y potentiometric sensor: dependence on spacer molecule selection

Author:

Richardson Hayley12ORCID,Kline Alex2,Pavlidis Spyridon2ORCID

Affiliation:

1. Department of Materials Science and Engineering North Carolina State University Raleigh, NC 27695 USA

2. Department of Electrical and Computer Engineering North Carolina State University Campus Box 7911 Raleigh, NC 27695-7911 USA

Abstract

AbstractNeuropeptide Y (NPY) plays a central role in a variety of emotional and physiological functions in humans, such as forming a part of the body′s response to stress and anxiety. This work compares the impact of MCH and PEG spacer molecules on the performance of a potentiometric NPY sensor. An NPY‐specific DNA aptamer with thiol termination was immobilized onto a gold electrode surface. The performance of the sensor is compared when either an MCH‐ or PEG‐based self‐assembled monolayer is formed following aptamer immobilization. Backfilling the surface with alkanethiol spacer molecules like these is key for proper conformational folding of aptamer‐target binding. Non‐specific adhesion of NPY to the MCH‐based sensor surface was observed via surface plasmon resonance (SPR), and then confirmed via potentiometry. It is then shown that PEG improves the sensor′s sensitivity to NPY compared to the surfaces with an MCH‐based SAM. We achieve the detection of picomolar range NPY levels in buffer with a sensitivity of 36.1 mV/decade for the aptamer and PEG‐based sensor surface, thus demonstrating the promise of potentiometric sensing of NPY for future wearable deployment. The sensor′s selectivity was also studied via exposure to cortisol, a different stress marker, resulting in a 13x smaller differential voltage (aptamer‐specific) response compared to that of NPY.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3