Affiliation:
1. School of Material and Chemical Engineering Hubei University of Technology Wuhan 430068 China
2. College of Resources and Environment South-Central Minzu University Wuhan 430074 China
3. School of Bioengineering and Food Science Hubei University of Technology Wuhan 430068 China
Abstract
AbstractEfficient detection of chemical oxygen demand (COD) is crucial for effective pollution prevention. Traditional Cu‐based electrodes, widely utilized for COD sensors suffer from issues related to low activity and stability. This study introduced a novel approach by employing a copper foam‐supported metal‐organic frameworks (Cu‐MOF), synthesized through a solvothermal method, which is subsequently pyrolyzed to yield a carbon‐capsulated CuOx/Cu foam electrode. Cyclic voltammetry analysis demonstrated that the carbon‐capsulated CuOx/Cu foam electrode exhibited superior redox activity, notably generating an increased amount of Cu(III) species. This enhancement significantly contributed to the electrocatalytic oxidation of organic compounds. The developed electrode demonstrated a wide linear detection range of 5–600 ppm, with a low detection limit of 0.96 ppm (S/N=3) for COD sensing. Notably, the sensor exhibited excellent anti‐interference capabilities, desirable reproducibility, and stability. The proposed method was successfully applied to determine COD in real water samples. Comparative analysis with the standard potassium dichromate method revealed high accuracy and a low relative error (2.89 %–6.72 %). This innovative approach holds promise for rapid and accurate COD detection, presenting a valuable contribution to environmental monitoring and water quality assessment.
Subject
Electrochemistry,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献