Affiliation:
1. School of Artificial Intelligence Chongqing University of Technology Chongqing China
2. Chongqing Industrial Big Data Innovation Center Co., Ltd. Chongqing China
Abstract
AbstractWind power fluctuation significantly impacts the safe and stable operation of the wind farm power grid. As the installed capacity of grid‐connected wind power expands to a certain threshold, these fluctuations can detrimentally affect the wind farm's operations. Consequently, wind power prediction emerges as a critical technology for ensuring safe, stable and efficient wind power generation. To optimize power grid dispatching and enhance wind farm operation and maintenance, precise wind power prediction is essential. In this context, we introduce a joint deep learning model that integrates a compact pyramid structure with a residual attention encoder, aiming to bolster wind farm operational safety and reliability. The model employs a compact pyramid architecture to extract multi‐time scale features from the input sequence, facilitating effective information exchange across different scales and enhancing the capture of long‐term sequence dependencies. To mitigate vanishing gradients, the residual transformer encoder is applied, augmenting the original attention mechanism with a global dot product attention pathway. This approach improves the gradient descent process, making it more accessible without introducing additional hyperparameters. The model's efficacy is validated using a dataset from an actual wind farm in China. Experimental outcomes reveal a notable enhancement in wind power prediction accuracy, thereby contributing to the operational safety of wind farms.
Funder
China Postdoctoral Science Foundation
Chongqing Research Program of Basic Research and Frontier Technology
Chongqing University of Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献