The analysis of response surface optimization and performance of cross‐linked starch/tannic acid adhesive reinforced by phragmites fibers

Author:

Yu Hongjian12,Xia Ying1ORCID,Jin Zhixiang1,Zhang Le3,Liu Xueting1,Chen Haozhe1,Wang Zhichao1,Wang Shuwei1,Shi Shenglun3

Affiliation:

1. School of Textile and Material Engineering Dalian Polytechnic University Dalian China

2. College of Light Industry and Textile Qiqihar University Qiqihar Heilongjiang China

3. Dalian Jutong Plastic Products Co., Ltd, Technical department Dalian China

Abstract

AbstractThe present study utilizes starch as the primary raw material for preparing a water‐resistant biomass adhesive to replace formaldehyde‐based resin adhesive, which is subsequently used in plywood production. The preparation process of starch‐based adhesive (SBA) was optimized using response surface methodology (RSM), and the effects of the mass ratio of starch to tannic acid, the dosages of phragmites fiber and boric acid on wet‐bond strength were studied. The quadratic regression model of SBA showed significant results (p < 0.0001). The optimal preparation condition was that the mass ratio between starch and tannic acid was 5:2, in the dosages of 2.9% for phragmites fibers and 3.2% for boric acid. The wet‐bond strength of the plywood prepared with this adhesive was 1.73 MPa. Characterization analysis showed that the hydroxyl group on the surface of starch and tannic acid had complexation with boric acid, which improved the wet‐bond strength, water resistance, and, thermal stability of the adhesive. The alkali‐treated phragmites fibers had better compatibility with the starch matrix than the original fiber, which improved the cohesion of the SBA and increased the wet‐bond strength by 26%.Highlights The phragmites fibers have been used to reinforce starch‐based adhesives. Boric acid facilitates the formation of crosslinked structures. The phenolic hydroxyl group in tannins provides excellent water resistance. Phragmites fiber exhibits good compatibility with the adhesive matrix. The cured starch‐based adhesive has excellent wet‐bond strength.

Funder

Liaoning Revitalization Talents Program

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3