A novel LC‐based bipolar pulsed power supply for dielectric barrier discharge excimer lamps

Author:

Tang Xiongmin1ORCID,Chen Yongquan1ORCID,Jiang Tianhong1,Lin Zhihong1,Zhou Zexin1ORCID,Zhao Zihao1,Xie Haoyuan1

Affiliation:

1. College of Automation Guangdong University of Technology Guangzhou 510006 China

Abstract

SummaryAn excitation voltage with a high rising rate, falling rate, and idle time simultaneously is beneficial to taking advantage of the potential of dielectric barrier discharge (DBD) loads. However, how to generate this kind of excitation voltage with a simple structure is rarely researched. To address the issue, a novel LC‐based bipolar high‐voltage pulsed power supply is proposed in this paper. The proposed power supply is comprised of an inductance, two capacitances, a step‐up transformer, and two power switches sharing the same ground. By planning the switch sequence of the two power switches, a resonant stage and an idle stage are formed. The resonant stage is used to generate a bipolar pulse excitation voltage on DBD excimer lamps and an idle time in the excitation voltage is generated in the idle stage. The characteristics and the parameters design of the proposed power supply are studied by theoretical analysis. To verify the feasibility of the proposed power supply, an experimental setup is built with a DBD‐type excimer lamp. The experimental results show that the power supply not only better takes advantage of the potential of DBD excimer lamps, but also there is a fine luminous regulation feature for the excimer lamp. Besides these characteristics, the proposed power supply has several other benefits, such as good adaptability to different DBD‐type excimer lamps, a small number of components, and high efficiency.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3