On the incompressible limit for a tumour growth model incorporating convective effects

Author:

David Noemi1,Schmidtchen Markus2

Affiliation:

1. Institut Camille Jordan Université Claude Bernard Lyon 1 43 BD DU 11 Novembre 1918 Villeurbanne Cedex 69622 France

2. Faculty of Mathematics Willers‐Bau, Technische Universität Dresden Dresden Germany

Abstract

AbstractIn this work we study a tissue growth model with applications to tumour growth. The model is based on that of Perthame, Quirós, and Vázquez proposed in 2014 but incorporates the advective effects caused, for instance, by the presence of nutrients, oxygen, or, possibly, as a result of self‐propulsion. The main result of this work is the incompressible limit of this model which builds a bridge between the density‐based model and a geometry free‐boundary problem by passing to a singular limit in the pressure law. The limiting objects are then proven to be unique.

Funder

Horizon 2020

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Reference57 articles.

1. Régularité des solutions de l'équation des milieux poreux dans RN${\bf R}^{N}$;Aronson D. G.;C. R. Acad. Sci. Paris Sér. A‐B,1979

2. Compactness for nonlinear continuity equations

3. A Model for the Formation and Evolution of Traffic Jams

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3