In vivo imaging of the phagocytic dynamics underlying efficient clearance of adult‐born hippocampal granule cells by ramified microglia

Author:

Kamei Ryosuke1,Okabe Shigeo1ORCID

Affiliation:

1. Department of Cellular Neurobiology, Graduate School of Medicine the University of Tokyo Tokyo Japan

Abstract

AbstractThe phagocytosis of dead cells by microglia is essential in brain development and homeostasis. However, the mechanism underlying the efficient removal of cell corpses by ramified microglia remains poorly understood. Here, we investigated the phagocytosis of dead cells by ramified microglia in the hippocampal dentate gyrus, where adult neurogenesis and homeostatic cell clearance occur. Two‐color imaging of microglia and apoptotic newborn neurons revealed two important characteristics. Firstly, frequent environmental surveillance and rapid engulfment reduced the time required for dead cell clearance. The motile microglial processes frequently contacted and enwrapped apoptotic neurons at the protrusion tips and completely digested them within 3–6 h of the initial contact. Secondly, while a single microglial process engaged in phagocytosis, the remaining processes continued environmental surveillance and initiated the removal of other dead cells. The simultaneous removal of multiple dead cells increases the clearance capacity of a single microglial cell. These two characteristics of ramified microglia contributed to their phagocytic speed and capacity, respectively. Consistently, the cell clearance rate was estimated to be 8–20 dead cells/microglia/day, supporting the efficiency of removing apoptotic newborn neurons. We concluded that ramified microglia specialize in utilizing individual motile processes to detect stochastic cell death events and execute parallel phagocytoses.

Funder

Japan Agency for Medical Research and Development

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3