Endoplasmic reticulum associated degradation is essential for maintaining the viability or function of mature myelinating cells in adults

Author:

Wu Shuangchan12ORCID,Lin Wensheng12ORCID

Affiliation:

1. Department of Neuroscience University of Minnesota Minneapolis Minnesota USA

2. Institute for Translational Neuroscience, University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractEndoplasmic reticulum associated degradation (ERAD) is responsible for recognition and degradation of unfolded or misfolded proteins in the ER. Sel1L is essential for the ERAD activity of Sel1L‐Hrd1 complex, the best‐known ERAD machinery. Using a continuous Sel1L knockout mouse model (CNP/Cre; Sel1LloxP/loxP mice), our previous studies showed that Sel1L knockout in myelinating cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS), leads to adult‐onset myelin abnormalities in the CNS and PNS. Because Sel1L is deleted in myelinating cells of CNP/Cre; Sel1LloxP/loxP mice starting at very early stage of differentiation, it is impossible to rule out the possibility that the adult‐onset myelin abnormalities in these mice results from developmental myelination defects caused by Sel1L knockout in myelinating cells during development. Thus, using an inducible Sel1L knockout mouse model (PLP/CreERT; Sel1LloxP/loxP mice) that has normal, intact myelin and myelinating cells in the adult CNS and PNS prior to tamoxifen treatment, we sought to determine if Sel1L knockout in mature myelinating cells of adult mice leads to myelin abnormalities in the CNS and PNS. We showed that Sel1L knockout in mature myelinating cells caused ERAD impairment, ER stress and UPR activation. Interesting, Sel1L knockout in mature oligodendrocytes impaired their myelinating function by suppressing myelin protein translation, and resulted in progressive myelin thinning in the adult CNS. Conversely, Sel1L knockout in mature Schwann cells led to Schwann cell apoptosis and demyelination in the adult PNS. These findings demonstrate the essential roles of ERAD in mature myelinating cells in the adult CNS and PNS under physiological conditions.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3