PTM‐Psi: A python package to facilitate the computational investigation of post‐translational modification on protein structures and their impacts on dynamics and functions

Author:

Mejia‐Rodriguez Daniel1ORCID,Kim Hoshin1ORCID,Sadler Natalie2,Li Xiaolu2,Bohutskyi Pavlo23,Valiev Marat1,Qian Wei‐Jun2,Cheung Margaret S.145ORCID

Affiliation:

1. Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland Washington USA

2. Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory Richland Washington USA

3. Biological Systems Engineering Washington State University Richland Washington USA

4. Environmental Molecular Sciences Laboratory Richland Washington USA

5. University of Washington Seattle Washington USA

Abstract

AbstractPost‐translational modification (PTM) of a protein occurs after it has been synthesized from its genetic template, and involves chemical modifications of the protein's specific amino acid residues. Despite of the central role played by PTM in regulating molecular interactions, particularly those driven by reversible redox reactions, it remains challenging to interpret PTMs in terms of protein dynamics and function because there are numerous combinatorially enormous means for modifying amino acids in response to changes in the protein environment. In this study, we provide a workflow that allows users to interpret how perturbations caused by PTMs affect a protein's properties, dynamics, and interactions with its binding partners based on inferred or experimentally determined protein structure. This Python‐based workflow, called PTM‐Psi, integrates several established open‐source software packages, thereby enabling the user to infer protein structure from sequence, develop force fields for non‐standard amino acids using quantum mechanics, calculate free energy perturbations through molecular dynamics simulations, and score the bound complexes via docking algorithms. Using the S‐nitrosylation of several cysteines on the GAP2 protein as an example, we demonstrated the utility of PTM‐Psi for interpreting sequence–structure–function relationships derived from thiol redox proteomics data. We demonstrate that the S‐nitrosylated cysteine that is exposed to the solvent indirectly affects the catalytic reaction of another buried cysteine over a distance in GAP2 protein through the movement of the two ligands. Our workflow tracks the PTMs on residues that are responsive to changes in the redox environment and lays the foundation for the automation of molecular and systems biology modeling.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3