Balancing graph Voronoi diagrams with one more vertex

Author:

Ducoffe Guillaume12ORCID

Affiliation:

1. Software and Complex Systems Engineering, National Institute for Research and Development in Informatics Bucharest Romania

2. Faculty of Mathematics and Computer Science, University of Bucharest Bucharest Romania

Abstract

AbstractLet be a graph with unit‐length edges and nonnegative costs assigned to its vertices. Given a list of pairwise different vertices , the prioritized Voronoi diagram of with respect to is the partition of in subsets so that, for every with , a vertex is in if and only if is a closest vertex to in and there is no closest vertex to in within the subset . For every with , the load of vertex equals the sum of the costs of all vertices in . The load of equals the maximum load of a vertex in . We study the problem of adding one more vertex at the end of in order to minimize the load. This problem occurs in the context of optimally locating a new service facility (e.g., a school or a hospital) while taking into account already existing facilities, and with the goal of minimizing the maximum congestion at a site. There is a brute‐force algorithm for solving this problem in time on ‐vertex ‐edge graphs. We prove a matching time lower bound–up to sub‐polynomial factors–for the special case where and , assuming the so called Hitting Set Conjecture of Abboud et al. On the positive side, we present simple linear‐time algorithms for this problem on cliques, paths and cycles, and almost linear‐time algorithms for trees, proper interval graphs and (assuming to be a constant) bounded‐treewidth graphs.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Reference28 articles.

1. A.Abboud V.Vassilevska Williams andJ.Wang.Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. Proceedings of the twenty‐seventh annual symposium on discrete algorithms (SODA) SIAM.2016377–391.

2. An algorithm for the organization of information;Adelson‐Velsky G.;Proc USSR Acad Sci,1992

3. Voronoi diagrams—a survey of a fundamental geometric data structure

4. Voronoi game on graphs

5. The Level Ancestor Problem simplified

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3