Long Noncoding RNA RP11-380D23.2 Drives Distal-Proximal Patterning of the Lung by Regulating PITX2 Expression

Author:

Banerjee Poulomi1,Surendran Harshini1,Bharti Kapil2,Morishita Kaoru3,Varshney Anurag3,Pal Rajarshi145ORCID

Affiliation:

1. School of Regenerative Medicine, Manipal University, Bangalore, Karnataka, India

2. National Eye Institute, NIH, Bethesda, Maryland, USA

3. Departments of Pharmacology and Toxicology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, Haryana, India

4. Centre for Cellular and Molecular Platforms (C-CAMP), NCBS-TIFR Campus, Eyestem Research, Bangalore, Karnataka, India

5. School of Life Sciences, TransDisciplinary University, Bangalore, Karnataka, India

Abstract

Abstract Early lung development is a tightly orchestrated process encompassing (a) formation of definitive endoderm, (b) anteriorization of definitive endoderm, followed by (c) specification and maturation of both proximal and distal lung precursors. Several reports detailing the interaction of genes and proteins during lung development are available; however, studies reporting the role(s) of long noncoding RNAs (lncRNA) in lung morphogenesis are limited. To investigate this, we tailored a protocol for differentiation of human-induced pluripotent stem cells into distal and proximal lung progenitors to mimic in vivo lung development. The authenticity of differentiated cells was confirmed by expression of key lung markers such as FoxA2, Sox-17, Nkx2.1, Pitx2, FoxJ1, CC10, SPC, and via scanning as well as transmission electron microscopy. We employed next generation sequencing to identify lncRNAs and categorized them based on their proximity to genes essential for lung morphogenesis. In-depth bioinformatical analysis of the sequencing data enabled identification of a novel lncRNA, RP11-380D23.2, which is located upstream of PITX2 and includes a binding site for PARP1. Chromatin immunoprecipitation and other relevant studies revealed that PARP1 is a repressor for PITX2. Whole genome microarray analysis of RP11-380D23.2/PITX2 knockdown populations of progenitors demonstrated enrichment in proximal progenitors and indicated altered distal-proximal patterning. Dysregulation of WNT effectors in both knockdowns highlighted direct modulation of PITX2 by RP11-380D23.2. Most of these results were validated in four independent hiPSC lines (including a patient-specific CFTR mutant line). Taken together, these findings offer a mechanistic explanation underpinning the role of RP11-380D23.2 during lung morphogenesis via WNT signaling.

Funder

National Eye Institute

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3