Modeling the progressive damage of cryogenic microdroplet tests using a temperature‐friction cohesive zone model

Author:

Li Ruoyu1ORCID,Xu Zhonghai1ORCID,Zou Xiaocan1,He Xiaodong1

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Harbin Institute of Technology Harbin People's Republic of China

Abstract

AbstractThe fiber/resin interfacial mechanical properties in low‐temperature environments are crucial for composite materials, and a temperature‐friction cohesive zone model is proposed in this paper. This model combines the temperature effect, the interfacial friction effect, and the interfacial debonding. The mechanical characteristics of the fiber/matrix interface are described using this model. The proposed model has been implemented in ABAQUS using the VUMAT subroutine. To verify this model, microdroplet debonding experiments were conducted at temperatures 298, 193, and 77 K. The results of the simulation and the experiment matched well. The proposed model takes temperature differences as a parameter and can characterize the interfacial mechanical response at different temperatures. In addition, the temperature, friction, interface parameters, and microdroplet size effects on the mechanical properties of the fiber/matrix interface were investigated. The results show that interfacial friction and temperature differences have a significant impact on the interfacial mechanical properties. The microdroplet size also has an influence on interfacial shear strength.Highlights A temperature‐friction cohesive zone model is proposed. Cryogenic microdroplet debonding tests were conducted. The finite element method results are stable and close to the regression line of tests. The temperature difference changes the stress state of the interface. The interfacial sliding friction force has a large dispersion.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3