Sarsasapogenin, a principal active component absorbed into blood of total saponins of Anemarrhena, attenuates proliferation and invasion in rheumatoid arthritis fibroblast‐like synoviocytes through downregulating PKM2 inhibited pathological glycolysis

Author:

Dai Yuan12,Liu Panwang23,Wen Wen23,Li Ping23,Yang Chen4,Wang Ping23,Xu Shijun23ORCID

Affiliation:

1. School of Health Preservation and Rehabilitation Chengdu University of Traditional Chinese Medicine Chengdu China

2. Institute of Meterial Medica Integration and Transformation for Brain Disorders Chengdu University of Traditional Chinese Medicine Chengdu China

3. School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China

4. Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu China

Abstract

AbstractIncreased glycolytic in fibroblast‐like synoviocytes (FLS) of rheumatoid arthritis (RA) not only contributes to early‐stage disease pathogenesis but leads to sustained proliferation of FLS. Given the importance of PKM2 in glycolysis and apoptosis, PKM2 is considered a potential therapeutic and drug discovery target in RA. Total saponins of anemarrhena (TSA), a class of steroid saponins, originated from Anemarrhena asphodeloides Bge. In this study, we verified that 200 mg/kg TSA could significantly alleviate inflammation and the pathological characteristics of RA and inhibit synovial hyperplasia in AA rats. We confirmed that sarsasapogenin (SA) was the principal active ingredient absorbed into the blood of TSA by the UPLC/Q Exactive MS test. Then we used TNF‐α‐induced MH7A to get the conclusion that 20 μM SA could effectively inhibit the glycolysis by inhibiting the activity of PKM2 tetramer and glucose uptake. Moreover, 20 μM SA could suppress proliferation, migration, invasion, and cytokine release of FLS, interfere with the growth cycle of FLS, and induce FLS apoptosis by depressing the phosphorylation of PKM2. At last, In‐1, a potent inhibitor of the PKM2 was used to reverse verify the above results. Taken together, the key mechanisms of SA on RA treatment through downregulating the activity of PKM2 tetramer and phosphorylation of PKM2 inhibited pathological glycolysis and induced apoptosis to exert inhibition on the proliferation and invasion of RA FLS.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3