Tensile and heat resistance behavior of modified thermoplastic polyurethane elastomer in anisotropic neodymium‐iron‐born bonded magnet

Author:

Qu Zhongjie1,Wu Qiong1,Yu Kesong2,Wang Zhanjia1,Zhang Mengkang1,Yue Ming1ORCID,Liu Weiqiang1

Affiliation:

1. Faculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China Beijing University of Technology Beijing China

2. School of Materials Science and Engineering Zhengzhou University Zhengzhou China

Abstract

AbstractThe emergence of anisotropic neodymium‐iron‐boron (NdFeB)‐bonded magnets with high energy density and freedom of shape design is effective in minimizing the dimensions and mass of electric motors. However, limitations in mechanical strength and heat resistance at elevated temperatures hinder their further application. To overcome these challenges, we present a novel approach to enhance the tensile strength and heat resistance of the NdFeB‐bonded magnet involving the modification of thermoplastic polyurethane (TPU) through the melt‐mixing method with a styrene–acrylonitrile‐glycidyl methacrylate terpolymer (SAG) modifier and engineered TPU was then employed in fabricating NdFeB‐bonded magnets via calendering molding. The microstructure of the magnets exhibited aligned NdFeB particles due to mechanical stress during calendering molding, which results in anisotropy. Interestingly, the magnetic properties of bonded magnets based on modified TPU remain almost the same compared to their unmodified counterparts, showcasing a maximum energy product of around 12 MGOe. The mechanical tests demonstrated a maximum 32.4% increase in the tensile strength of bonded magnets based on modified TPU. A progressive shift to a higher temperature (100 to 120°C) of magnet samples fractured occurs in the heat resistance measurement of the bonded magnets based on modified TPU, meaning improvement in heat resistance of NdFeB bonded magnets.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3