Enhancement of the mechanical and tribological properties of carboxylated acrylonitrile butadiene rubber filled with cryptocrystalline graphite by different preparation methods

Author:

Tong Xi12ORCID,Zhou Xiangwen12ORCID,Bai Zhimin3,Liu Bing12

Affiliation:

1. Institute of Nuclear and New Energy Technology Tsinghua University Beijing China

2. Collaborative Innovation Center of Advanced Nuclear Energy Technology, The Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education Tsinghua University Beijing China

3. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes China University of Geosciences Beijing China

Abstract

AbstractAs a cost‐effective and environmentally friendly natural mineral, cryptocrystalline graphite (CG) is applied in rubber materials and its performance has been evaluated. In this work, the filler dispersion and mechanical and tribological properties of carboxylated acrylonitrile butadiene rubber (XNBR)/CG composites by different preparation methods were studied. XNBR/CG composites prepared by latex blending (XNBR/CG‐L) exhibited better mechanical and tribological performance, higher toughness, and lower heat build‐up than those prepared by mechanical blending (XNBR/CG‐M). These differences were ascribed to the filler dispersion degree, filler amount and dispersed size, and also filler–rubber interfacial interaction. Adding CG was conducive to improving the stability of the friction coefficient and reduced the wear rate via the formation of graphite lubricant and transfer films. The tribological performance of XNBR/CG‐L was superior to that of XNBR/CG‐M because of the improved tensile strength, tear resistance, and toughness as well as lower temperature rise. Scanning electron microscopy (SEM) and optical microscope observation showed a smoother worn surface, less and smaller wear debris of XNBR/CG‐L, and a more uniform transfer film on the steel counterpart surface. The relevant results provided new insight into the performance and structural design of CG/rubber composites.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3