Isolation and identification of endophytic actinobacteria from Iris persica and Echium amoenum plants and investigation of their effects on germination and growth of wheat plant

Author:

Oloumi Hakimeh1ORCID,Khaleghi Moj2,Dalvand Ava2

Affiliation:

1. Department of Ecology, Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology Kerman Iran

2. Department of Biology, Faculty of Sciences Shahid Bahonar University of Kerman Kerman Iran

Abstract

AbstractPlant biotechnology helps to develop different types of new products with increased resistance to disease, greater tolerance to drought and salt stress, and better nutritional value. The interaction of plants and microorganisms will play a significant role to achieve this purpose. The aims of this study were to isolate endophyte Actinobacteria strains of some medicinal plants and the investigation of their bioactive potential. 15 Actinobacteria strains were selectively isolated from Persian iris and Echium amoenum plants, and then their belonging to Actinobacteria phylum was confirmed using an Actinobacteria‐specific primer pair. The antioxidant activity of the crude extract obtained from the isolated strains was investigated based on DPPH method. Investigating the antioxidant activity of the crude extract showed that at a concentration of 100 μg/mL, the two strains EG1 and EG2 had 71% and 78% antioxidant activity, respectively. According to the phylogeny studies, it was determined that two strains belonged to the Streptomyces genus. The effect of supernatant achieved from selected endophytic strain on 35‐day wheat plants showed that the supernatant considerably promotes root and shoot growth and chlorophyll content under salinity stress (150 mM NaCl). In general, it can be concluded strains that live symbiotically with medicinal plants are rich sources of bioactive compounds. Therefore, identification of the bioactive compounds in the extract of isolated Actinobacteria from medicinal plants and further studies on their metabolism are suggested.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3