Design of wideband bandpass frequency selective surface based on the patch resonators and substrate integrated waveguide cavities

Author:

Liu Qianwen1ORCID,Zhou Ying2,Li Bo2,Lyu Yun‐peng1

Affiliation:

1. College of Telecommunications and Information Engineering Nanjing University of Posts and Telecommunications Nanjing China

2. College of Electronic and Optical Engineering Nanjing University of Posts and Telecommunications Nanjing China

Abstract

AbstractIn this paper, a new approach for the design of wideband bandpass frequency selective surface (FSS) is proposed based on the microstrip patch resonator and substrate integrated waveguide (SIW) cavity. Originating from the similarity of field distributions between the patch and SIW resonators, the patch resonator is concentrically embedded within the SIW cavity. In this context, resonant modes in both patch resonator and SIW cavity can be generated without enlarging the circuit size. Then, the slotlines are introduced to the ground layer to establish cross‐couplings to produce transmission zeros (TZs) for better out‐of‐band performances. For demonstration, a fourth‐order bandpass FSS is constructed, simulated, and fabricated. The measured results agree with the simulated ones, verifying that the proposed design method possesses attractive advantages of low profile, compact size, high frequency selectively, and nice universality.

Funder

State Key Laboratory of Millimeter Waves

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3