Experimental investigation of seismic behavior of precast pier‐footing socket connection with different design parameters

Author:

Yang Jun1ORCID,Guo Tong2ORCID,Zeng Cihang2,Shi Huiduo3,Fu Chenxi4

Affiliation:

1. Key Laboratory of Structural Engineering of Jiangsu Province Suzhou University of Science and Technology Suzhou PR China

2. School of Civil Engineering Southeast University Nanjing China

3. Jiangsu Construction Bureau of Transportation Engineering Nanjing China

4. China Design Group Co. Ltd. Nanjing China

Abstract

AbstractAccelerated bridge construction, with innovative connection details and construction technologies, has been extensively investigated and put into practical application for years. Nowadays, there are three commonly used connection methods of accelerated bridge construction technology, namely, lap‐spliced connection, sleeve connection, and socket connection. Due to the convenience of construction and lower requirements of construction accuracy, the socket connection is more suitable for reconstruction and expansion projects of traffic infrastructure, which could minimize the impact on traffic and accelerate construction progress. According to the structural characteristics of the socket connection, there are some design parameters that may significantly affect the seismic resistance of the structure, such as socket embedment length, fabrication of the shear key, and grouting material strength. To fully study the influence of different design parameters on structural performance, an experiment was carried out to investigate the seismic behavior of the precast pier‐footing socket connections with different design parameters. Five 1:2 scale reinforced concrete precast pier‐footing socket connection specimens with different design parameters were designed and tested under cyclically reversed horizontal loads. The development of hysteresis features, failure mode, load‐bearing capacity, stiffness degradation, structural ductility, energy dissipation capacity, and residual drift are analyzed to reveal the influence of the different design parameters on the seismic behavior of the precast pier‐footing socket connection. The seismic behavior of the precast pier‐footing socket connection was significantly influenced by the embedment length especially when the embedment length was less than 1.0bc. When the embedment length was 0.5bc, the failure mode changed from bending damage at the bottom of the precast pier to the anchorage failure of the precast pier‐footing socket connection. When the embedment length was 1.5bc, the fabrication of the shear key had limited improvement on the seismic performance of the specimen, while reducing the ductility of the specimen. When the embedment length was 1.0bc, the grouting material with a strength grade of C60 could be used in the socket connection between the precast pier and footing. The research presented in this paper provides some design suggestions and a technical basis for evaluating the seismic behavior of precast pier‐footing structures with socket connection.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3