Contribution of steel fibers to the flexural and shear behavior of RC beams damaged by alkali‐silica reaction

Author:

Torrijos María C.1ORCID,Zerbino Raúl L.1,Giaccio Graciela M.2,Cuenca Estefanía3ORCID,Conforti Antonio4ORCID

Affiliation:

1. CONICET. LEMIT‐CIC Researcher Faculty of Engineering UNLP La Plata Argentina

2. LEMIT‐CIC, CIC Researcher Faculty of Engineering UNLP La Plata Argentina

3. Department of Civil and Environmental Engineering (DICA) Researcher Politecnico die Milano Milan Italy

4. Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM) Researcher University of Brescia Brescia Italy

Abstract

AbstractThe study of damage processes in concrete and their effects on the residual properties represents a key point related to the service life of reinforced concrete (RC) structures. The use of steel fibers in RC beams mainly improves the cracking control and the shear bearing capacity. Considering the shear behavior, the presence of fibers not only leads to partial or total substitution of secondary reinforcement, but they can also result in a modification of the failure behavior from a shear failure (brittle) to a bending (ductile) one. The contribution of fibers on flexural and shear behavior of sound and damaged RC beams was investigated using alkali‐silica reaction as a damaging tool. First, the evolution of deformations and cracks were measured on creep tests of RC beams with and without fibers and reactive aggregates. Second, the flexural and shear behavior of damaged and undamaged beams incorporating steel fibers were compared. Results showed that alkali‐silica reaction damage can provoke a reduction of RC beam ductility, while the flexural strength is preserved. Regarding shear, it was observed that even in damaged concrete, fibers were able to control the crack propagation and increase the bearing capacity.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad Nacional de La Plata

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3