Effect of silica fume and waste rubber on the performance of slag‐based geopolymer mortars under high temperatures

Author:

Sağır Mehmet Akif1,Karakoç Mehmet Burhan1ORCID,Özcan Ahmet2ORCID,Ekinci Enes1ORCID,Yolcu Abdurrahman1

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering İnönü University Malatya Turkey

2. Department of Civil Engineering, Faculty of Engineering Kütahya Dumlupınar University Kütahya Turkey

Abstract

AbstractIn this study, the fire resistance of slag‐based geopolymer mortars was investigated and the effect of silica fume (SF) and waste rubber (WR) on this resistance was determined. In slag‐based geopolymer mortars activated using 12M NaOH solution, 0%, 5%, and 10% by weight SF was substituted for slag; 0%, 5%, 10%, and 15% WR by volume were substituted for fine aggregate. The samples that completed the curing period were exposed to temperatures of 250°C, 500°C, and 750°C for 1 h, and the mechanical (compressive, flexural and splitting tensile strengths, and impact resistance), physical (weight change and sorptivity) and microstructure (scanning electron microscopy [SEM] and energy dispersive spectroscopy [EDS]) properties of these samples were examined. The compressive strengths of the samples without WR were between 48.10 and 60.97 MPa, and the samples without SF were between 28.52 and 48.10 MPa. Strength losses at 750°C were between 51.5% and 73.5%. As the SF substitution increased, the samples' mechanical and physical properties improved, whereas as the WR substitution increased, the samples' mechanical and physical properties declined. While the SF substitution had a positive effect on the fire resistance of the samples, the WR substitution had a negative effect. It is thought that the choice of geopolymer binder as a binder in the mortar and the use of waste tires as aggregate contribute to the literature in terms of both preventing environmental pollution and ensuring the recycling of these materials.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3