Shear behavior of box‐section concrete beams reinforced by FRP bars and FRP stirrups

Author:

Ebrahim Ebrahim A.1,Mahmoud Ahmed A.2ORCID,Salama Mohamed A.2,Khater Ahmed N.2ORCID

Affiliation:

1. Faculty of Engineering (Shoubra) Benha University Cairo Egypt

2. Civil Engineering Department, Faculty of Engineering (Shoubra) Benha University Cairo Egypt

Abstract

AbstractA few research studies are available on the behavior of reinforced concrete (RC) box section beams with fiber‐reinforced polymer bars (FRP) and FRP stirrups. Consequently, the behavior of these beams needs to be investigated. This article studies experimentally, numerically, and analytically the effect of some variables on the behavior of RC box section beams. This article investigates many variables, such as the shear span‐to‐total depth ratio, the flexural FRP reinforcement ratio, and the FRP vertical and horizontal web reinforcement ratio. The experimental program consists of nine simply supported reinforced concrete box section beams. The numerical models using the nonlinear finite element program ANSYS V.15 are carried out. The results are compared to the experimental results using load‐deflection curves, crack patterns, failure loads, and failure modes. The shear capacities based on Egyptian ECP 208‐2019 and ACI 440‐2015 codes are compared to each other and to the experimental results. The findings show an adequate agreement between the experimental, numerical, and analytical results for the range of the studied parameters. The results reveal that increasing the shear span‐to‐depth ratio by 50% decreases the carrying capacity, toughness, and displacement ductility by 2%, 28%, and 12%, respectively. The increase in main FRP reinforcement rebars by 20% increases the carrying capacity and toughness by 59% and 62%, respectively. Increasing vertical FRP stirrups by 79% increases the failure load and toughness by 26% and 15%, respectively, and displacement ductility increases only by 0.8%. The increase in horizontal FRP stirrups by 79% increases the failure load, toughness, and displacement ductility by 33%, 8%, and 4%, respectively. Both Egyptian and American codes are conservative in some cases and unconservative in others, while the numerical results are unconservative.

Publisher

Wiley

Reference20 articles.

1. SarikayaH BalcıoğluH.The effect of glass fiber rebar reinforcement on the flexural behavior of reinforced concrete structural elements. Conference: IV. International Ege composite materials symposium at: Ege University KOMPEGE 2018. pp. 725–35.2018https://www.researchgate.net/publication/328809238

2. Shear Strength Prediction for Concrete Beams Reinforced with GFRP Bars

3. American Concrete Institute (ACI).Guide for the design and construction of structural concrete reinforced with fiber‐reinforced polymer (FRP) Bars.2015https://basalt-fibers.com/wp-content/uploads/2021/05/Standart_ACI-4401R15.pdf

4. Structural Behavior of Hollow Reinforced Concrete Beams: A Review

5. Behavior of concrete beams reinforced with GFRP BARS

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3