Affiliation:
1. School of Transportation Southeast University Nanjing China
2. Department of Electromechanical, Systems and Metal Engineering Ghent University Ghent Belgium
3. School of Civil and Transportation Engineering Guangdong University of Technology Guangzhou China
Abstract
AbstractAccelerated bridge construction is crucial in bridge engineering. In order to improve the seismic performance of prefabricated columns, this study proposes using ultra‐high performance concrete (UHPC) in the plastic hinge areas of prefabricated columns with bellows grouting connections. In particular, cyclic loading tests are carried out on four 1/3‐scaled columns, including two cast‐in‐place columns and two bellows grouting connection columns. The results show that columns with UHPC in the plastic hinge areas exhibit larger lateral and ultimate bearing capacity, ductility, cumulative energy dissipation, and stiffness compared to those with conventional concrete. Additionally, bellows grouting connection column with UHPC shows superior seismic performance compared to cast‐in‐place column with conventional concrete. The proposed finite element analysis model is in a good agreement with the test results. Through using finite element analysis, three key parameters influencing the seismic performance of bellows grouting columns are examined, and the optimal combination of these parameters is identified.