A holistic life cycle design approach to enhance the sustainability of concrete structures

Author:

di Summa Davide12ORCID,Parpanesi Matteo2,Ferrara Liberato2,De Belie Nele1

Affiliation:

1. Department of Structural Engineering and Building Materials Ghent University Ghent Belgium

2. Department of Civil and Environmental Engineering Politecnico di Milano Milan Italy

Abstract

AbstractThe development of innovative cementitious materials such as Ultra High Performance Concrete (UHPC) requires tailored approaches to assess both the environmental and economic impact of structural applications employing them. For this purpose, in this paper, Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) methodologies are integrated into a Durability Assessment‐Based Design (DAD) workflow which combines structural design algorithms for UHPC with the assessment of the durability performance, with the aim of predicting the evolution of the structural performance all along the service life (SL) in the intended scenarios. As a case study a water tank made of UHPC has been herein selected and compared to a reference made of ordinary reinforced concrete (ORC). While the ORC solution was designed with cantilever cast in situ walls, two different design concepts were assessed for the UHPC basin: one with cast in situ walls and one with precast slabs supported by ORC columns. Moreover, two different mix designs (mainly differing on the alternative presence of silica fume or slag) have been investigated for the UHPC basin and a SL equal to 50 years has been taken into account for each structure. The optimized design, together with the reduced frequency of the maintenance activities for the UHPC structure, allowed by the UHPC superior material and structural durability, resulted into consistent reductions of environmental impacts, up to 76% as for Human Toxicity and Fresh Water Aquatic Ecotoxicity in comparison to the ORC solution. In addition to this, an assessment of the overall construction and maintenance costs that occur during the lifetime of the structures showed a cost reduction higher than 40% for both UHPC solutions, mainly due to a reduction of up to 6% during the construction phase and 91% for the maintenance activities. This also highlights the importance of the correct metrics in evaluating the sustainability of UHPC structural applications, which has to move forward from the units volume or mass of material and its individual constituents to functional units, representative of the benefits of using advanced cement based materials in structurally and environmentally challenging service scenarios.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Reference73 articles.

1. Human Rights Council United Nations.Report of the Special Rapporteur on the issue of human rights obligations relating to the enjoyment of a safe clean healthy and sustainable environment.2022.

2. A bibliometric review of green building research 2000–2016

3. A review on buildings energy consumption information

4. An overview of construction and demolition waste management in Canada: a lifecycle analysis approach to sustainability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3