Research on the mechanical performance of circular concrete‐filled steel tube columns under bending‐torsional coupling

Author:

Ding Fa‐xing12,Huang Xin‐yu1,Gong Chen‐jie1ORCID,Pi Zheng‐bo3

Affiliation:

1. School of Civil Engineering, Central South University Changsha Hunan People's Republic of China

2. Engineering Technology Research Center for Prefabricated Construction Industrialization of Hunan Province People's Republic of China

3. School of Civil Engineering, Hunan Institute of Engineering Changsha Hunan People's Republic of China

Abstract

AbstractUnder the influence of wind and horizontal seismic forces, structures such as piers in curved beam bridges, main arches of steel tube concrete arch bridges, and frame columns may experience combined bending‐torsion stress states, affecting the safe usage of the structure. To investigate the mechanical performance of circular concrete‐filled steel tube(CFST) columns under bending‐torsional coupling, a three‐dimensional solid‐shell finite element model of circular concrete‐filled steel tube columns under various bending and torsion ratios (k) was established using ABAQUS software, and validated with existing experiments on such columns under bending‐torsional loading. Parametric analysis was conducted to explore the trends of interface slip and the restraining effect in circular concrete‐filled steel tube columns under different bending and torsion ratios, analyzing the impact of parameters such as the yield strength of steel, concrete strength, steel content in the cross‐section, and shear–span ratio on the combined bearing capacity. The results of the parametric analysis show that: (1) with the increase of k, the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (2) the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (3) with the increase of k, the circumferential and axial stresses in the steel tube surface of the circular concrete‐filled steel tube columns increase, while the shear stress decreases, leading to a transition in the failure mode of the columns from combined bending‐torsional failure to bending‐shear failure. Based on these findings, a practical calculation formula for the bending‐torsional combined bearing capacity of circular concrete‐filled steel tube columns is proposed, offering high calculation accuracy and serving as a reference for the design of such components.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3