Effects of rice husk ash on strength and durability performance of slag‐based alkali‐activated concrete

Author:

Pradhan Shashwati Soumya1ORCID,Mishra Umesh1,Biswal Sushant Kumar1,Pramanik Subhadip1,Jangra Parveen2ORCID,Aslani Farhad3ORCID

Affiliation:

1. Department of Civil Engineering National Institute of Technology Agartala Jirania India

2. Department of Civil Engineering DCRUST, Murthal Murthal India

3. Materials and Structures Innovation Group, School of Engineering University of Western Australia Perth Australia

Abstract

AbstractDespite their low impact on the environment and excellent mechanical strength, alkali‐activated concretes (AAC) can potentially replace ordinary Portland cement based concrete (OPC). However, AAC can be eco‐friendly and more sustainable by incorporating agricultural waste such as rice husk ash (RHA). Therefore, this study investigated the impact of RHA on the strength and durability performance of ground granulated blast furnace slag (GGBS) based AAC. For this purpose, seven mixes were made, in which RHA partially substituted GGBS with an increment of 5% up to 30%. The results of the experiments show that the workability and unit weight of AAC mixes decreased as the amount of RHA in the mix increased. The compressive strength of AAC mixes lies between 39.78 and 64.80 MPa, which is adequate for structural application. The AAC showed similar trends for all the mixes in terms of water absorption, permeable voids, apparent porosity and sorptivity. Compared to other mixes, the 5% GGBS substituted with RHA yields the highest resistance against carbonation. Compared to the sulfuric acid (H2SO4) cured sample, the specimen treated with hydrochloric acid (HCl) performed better in loss in mass, strength and ultrasonic pulse velocity. From scanning electron microscope test, the dense microstructure with pore refinement was observed in GGBS based AAC mix with 10% RHA content. According to the findings, RHA content up to 10% substitution can be used as a substitute for the binder to produce sustainable AAC with greater durability and could eventually replace conventional concrete in structural applications.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3