Study on steel fiber synergistically reinforced cellular concrete explosion‐proof effect in an underwater near‐field environment

Author:

Cao Kelei123,Qiu Qingming1,Huang Hu1ORCID,Wang Chao23,Zhang Changhui1,Zhang Yingying4

Affiliation:

1. School of Water Conservancy, North China University of Water Resources and Electric Power Zhengzhou China

2. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation Tianjin University Tianjin China

3. School of Civil Engineering, Tianjin University Tianjin China

4. School of International Education, North China University of Water Resources and Electric Power Zhengzhou China

Abstract

AbstractBased on the static and dynamic test results of steel fiber synergistically reinforced cellular concrete (SFSRCC) under a complex stress state, the yield surface equation and strain rate effect are modified to construct a modified Holmquist–Johnson–Cook (HJC) model suitable for the dynamic compression behavior characteristics of SFSRCC, and the modified HJC model is verified. At the same time, a finite width SFSRCC protective layer–roller compacted concrete (RCC) slab–water–explosive multimedia coupling model is established to explore the influence of setting different thicknesses of the SFSRCC protective layer (0, 0.1, 0.2, and 0.3 m) on the explosion‐proof performance and effect of the RCC slab structure. The results show that the heavy stress–strain curves and dynamic failure modes of the SFSRCC under different strain rates are in good agreement with the experimental results. The maximum errors of peak stress and peak strain between the simulation results and the experimental results are 1.04% and 6.6%, respectively, which confirms the validity of the HJC correction model and the accuracy of the simulation results. After setting different thicknesses of the protective layer, the RCC slab blast crater depth is reduced by 56.7%, 80%, and 93.3% compared with that at 0.18 m without a protective layer program, and almost no damage to the back explosion surface occurs. The failure volume ratio of the protected RCC slab structure gradually decreases from 38.53% to 3.24% with increasing protective layer thickness, and the protected RCC slab shows only slight damage after setting the protective layer. When the thickness of the protective layer is 0.3 m, the damage of the protected RCC slab structure is distributed in the surface area, which has little effect on the structural safety. These results show that the additional SFSRCC protective layer under the condition of underwater near‐field explosion can significantly reduce the damage degree of the slab structure and improve the explosion‐proof performance of the protected RCC slab structure. This research offers a theoretical reference for the explosion‐proof material selection and design of hydraulic structures and explosion‐proof application of SFSRCC under the action of underwater explosion impact loads.

Funder

North China University of Water Resources and Electric Power

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3