Effect of interfacial properties between polyethylene and polyvinyl alcohol fiber/cement matrix on properties of mortar and ECC

Author:

Fan Qichang1,Zheng Yuanyuan12ORCID,He Chunhui3,Meng Dan4,Guo Qun5,Liu Yiming1

Affiliation:

1. School of Civil Engineering, Sun Yat‐sen University Zhuhai China

2. Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China

3. Guangzhou Highway Engineering Group Co., Ltd. Guangzhou China

4. School of Architectural Engineering, Qingdao Agricultural University Qingdao China

5. Faculty of Infrastructure Engineering, Dalian University of Technology Dalian China

Abstract

AbstractTo explore the influence of the interface properties between fiber/cement matrix on the performance of fiber‐modified cement‐based composite. Polyethylene (PE) and polyvinyl alcohol fiber (PVA) are brought in the cement‐based materials to prepare mortar and Engineered Cementitious Composite (ECC) samples. The mortar's mechanical, and ECC's tensile capacity, four‐point bending and porosity were tested to verify the interface's influence on samples' performance. Furthermore, the water contact angle was used to analyze the wettability of the fiber, and a scanning electron microscope (SEM) was used to observe the fiber/matrix interface on the microscopic scale. Molecular dynamics simulation was performed to calculate the interfacial paraments from an atomic scale. The results shows that fiber increases the toughness of the mortar and improved its flexural strength. Through SEM, it was found that PVA fiber can form tight adsorption with the hydration matrix. While there are many apparent cracks and pores at the PE/matrix interface, the poor bonding destroys the matrix's structure and reduces its compressive strength. By analyzing the performance of ECC samples, it was known that PVA‐ECC's strain rate can reach 5.73%, while PE‐ECC is 4.20%. PE fiber has higher mechanical strength and can bear more loads, it helps PE‐ECC to obtain a greater modulus of rapture. Nuclear magnetic resonance results showed that the porosity of PVA‐ECC is lower than PE‐ECC. The ability of PE‐ECC to resist external interference is weak, and the interface of PE/matrix is easily damaged. Molecule dynamics simulation results indicated the adsorption energy between PVA/CSH is 6.17 times that of PE/CSH. The PVA/C‐S‐H interface tends to form CaO and H‐bonds to strengthen the bonding, the bonding has limited the movement of atoms and making the PVA chains tightly adsorbed on the CSH surface. While the adsorption between PE and CSH is weak, the PE will detach from the CSH surface and form aggregates. Moreover, PVA and water molecules form a stable hydrogen bond network to promote the hydration production grows on the surface of PVA fiber. However, PE fiber is complex enough to adsorb water molecules and hardly encourage the development of pores at the interface. By analyzing the properties of the interface between different fibers and cement matrix can provide insights for strengthening the interface properties of fiber cement matrix, and then improve the properties of fiber cement‐based composites.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Natural Science Foundation of Shandong Province

Publisher

Wiley

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3