Machine learning assisted prediction of the mechanical properties of carbon nanotube‐incorporated concrete

Author:

Imran Muhammad1,Amjad Hassan2,Khan Shayan3,Ali Shehroze1ORCID

Affiliation:

1. Department of Civil Engineering NFC Institute of Engineering & Fertilizer Research (IE&FR) Faisalabad Pakistan

2. STEM, University of South Australia (UniSA) Adelaide Australia

3. Newmark Civil Engineering Lab University of Illinois at Urbana–Champaign Urbana Illinois USA

Abstract

AbstractThe incorporation of carbon nanotubes (CNTs) in concrete can improve the physical, mechanical, and durability properties. However, the interaction of CNTs with concrete and their effect on the mechanical properties remains a challenging issue. Also, the determination of mechanical properties through experimental testing is time‐consuming, laborious, and uneconomical. This study focuses on the development of machine learning (ML) models for the prediction of the mechanical properties of concrete. A comprehensive data set of 758 CNT‐modified concrete specimens was established for the compressive strength (CS), split tensile strength (STS), flexural strength (FS), and modulus of elasticity (MOE) values from the experimental studies in the literature. Afterward, the predictive models were developed using multilinear regression (MLR), support vector machine (SVM), ensemble methods (EN), regression tree (RT), and Gaussian process regression (GPR). It was found that among ML models, the GPR model predicted the CS, STS, and FS at the highest efficiency with the coefficient of determination (R2) of 0.83, 0.78, and 0.93, respectively while the performance of the SVM model was superior for predicting MOE with an R2 value of 0.91. The mean absolute error (MAE) of the GPR model for CS, STS, FS, and MOE were 2.92, 0.26, 0.35, and 1.31, respectively which were also lesser than other models. The training time of different models demonstrated that the GPR model has also a lower training time (~3 s) as compared to other models which indicates it has a high accuracy‐to‐time cost ratio. Further, the most influential parameters on CS were age, cement, water–cement ratio, and carbon nanotubes. The one‐way partial dependence analysis showed a direct correlation for age and cement but an inverse correlation for the water–cement ratio and fine aggregate. The graphical user interface provides the implication of the developed models for practical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3