Effect of ultra‐high performance concrete repair layer thickness on the behavior of concrete columns

Author:

Tolentino Lucas Dezotti1,dos Santos Vinicius Brother1ORCID,Poncetti Bernardo Lopes1ORCID,Enami Rodrigo Mazia1,Krahl Pablo Augusto1,Vanderlei Romel Dias1ORCID

Affiliation:

1. Department of Civil Engineering State University of Maringá Paraná Brazil

Abstract

AbstractThe use of ultra‐high‐performance fiber reinforced concrete (UHPFRC) to repair or rehabilitate old concrete structures has been shown to be appropriate due to its properties, such as higher compressive strength, ductility, and durability than conventional concretes. One of the studied strengthening techniques is the reinforced concrete columns jacketing by UHPFRC. Some recent research evaluated some parameters, such as the repair thickness and the volumetric ratio of stirrups. However, other important parameters, such as UHPFRC jacketing thickness in different column cross‐sections and the concrete core compressive strength, need to be addressed. In addition, the analytical models presented in the literature are restricted to only one concrete grade. The present study aims to evaluate the behavior of short reinforced concrete columns strengthened with UHPFRC subjected to centered compression. Numerical analyses of three‐dimensional models were performed using the finite element method, validated, and calibrated using experimental results. The influence of the concrete core compressive strength, the UHPFRC jacketing thickness, and the shape of the cross‐section were evaluated. Numerical simulations concluded that the lower concrete core compressive strength columns showed the best relative increase performance. Moreover, the concrete core strength was inversely proportional to the resistance capacity of the repair system. In addition, the increase in repair thickness contributes to the axial strength of the column. Furthermore, the cross‐section influences the distribution of stresses and strains, showing the best performance for circular sections. Finally, regardless of cross‐section type, the proposed equations accurately predicted the numerical results.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3