Dynamical analysis of a 40 m span precast posttensioned concrete girder during lifting operations

Author:

de Lima Gabriel Henrique Arruda Tavares1ORCID,Krahl Pablo Augusto2,Siqueira Tiago Morkis3,de Lima Maria Cristina Vidigal1ORCID

Affiliation:

1. Faculty of Civil Engineering Federal University of Uberlandia Uberlândia MG Brazil

2. Department of Civil Engineering Mackenzie Presbyterian University Campinas SP Brazil

3. Department of Civil Engineering Federal University of Santa Catarina Florianópolis SC Brazil

Abstract

AbstractCranes are employed to lift precast concrete girders during their construction. Presently, there is no recommendation for operational velocities during girder assemblage, particularly for long elements; simultaneously, several accidents have been reported during the transitory phase of girder motion. Since this mechanical problem has been examined in technical literature using a static approach, the present research study aims to investigate the dynamical behavior of a long, prestressed concrete girder by determining critical operational velocities according to crane movements. Prestressing cables' eccentricity and lifting loop position deviation were accounted for in 3D finite element simulations of a 40 m span precast prestressed concrete girder. Transient nonlinear analyses to obtain stresses and deflections were performed, so as to account for the large deformation behavior of the motion. A frequency domain approach was employed to analyze the time history results using the girder's natural frequencies obtained by modal analysis. The finite element model was developed to simulate upward, downward, and lateral girder movements. The most significant displacements and stresses were observed in the highest girder acceleration peaks, amplified by eccentricities. Safety against cracking and subsequent failure during vertical and lateral movements was ensured for crane operating accelerations of 0.02 g (v = 20 cm/s) and 0.007 g (v = 7 cm/s), respectively. Compared with the usual static analysis, for the critical case investigated, the inertial effect intensified the tensile stresses by 27 times, increased the compressive stresses by 11%, and increased the girder deflection by 3 times.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3