Restoration of load capacity and stiffness of continuous steel–concrete composite beams having web openings using externally applied FRP strips

Author:

Hakeem Ibrahim Y.1,Osama Bothaina2,Li Weiwen3,Wang Peng34,Lu Yao3,Sobuz Md. Habibur Rahman5,Al Hudeesh Mohammed Ghalib1,Mansour Walid36

Affiliation:

1. Department of Civil Engineering College of Engineering, Najran University Najran Saudi Arabia

2. Structural Engineer Tanta Egypt

3. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University Shenzhen China

4. Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology Hong Kong China

5. Department of Building Engineering and Construction Management Khulna University of Engineering and Technology Khulna Bangladesh

6. Department of Civil Engineering, Faculty of Engineering Kafrelsheikh University Kafrelsheikh Egypt

Abstract

AbstractThe aim of this study is to explore the applicability of externally bonded fiber‐reinforced polymer (FRP) composites to enhance the structural performance of steel–concrete composite beams with web openings in terms of load capacity and stiffness. In order to achieve this aim, the ABAQUS software was used to create a three‐dimensional (3D) non‐linear finite element model (FEM) to simulate the behavior of FRP‐strengthened continuous composite beams with web openings exposed to monotonic loadings. After ascertaining the accuracy of the proposed model's results in successfully predicting failure patterns and load capacities of the experimentally tested specimens available in the literature, the suggested model was used to create a parametric study. The parametric study focused on the impacts of the opening location, opening shapes, and opening area on the failure pattern, load carrying capacity, and stiffness of continuous steel–concrete composite beams. Additionally, strengthening the web openings using different configurations and lengths of FRP strips with and without bolts was investigated. Results showed that the presence of web openings in location 2 exhibited the lowest load capacity of all investigated beams (20.80%–42.50% lower than the control composite beam). Moreover, the continuous composite beams with a circular opening were the best case and gave a higher failure load as compared to the rectangular opening at all locations. Additionally, all the simulated FRP‐strengthened composite beams in the third group demonstrated significant values of load capacities and stiffness among all the analyzed specimens.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3