Evaluating the shear performance of reinforced concrete beams using waste glass powder as a sustainable cement substitute

Author:

Omer Brwa1ORCID,Saeed Jalal1

Affiliation:

1. College of Engineering, Department of Civil Engineering University of Sulaimani Sulaymaniyah Kurdistan Region Iraq

Abstract

AbstractThe scarcity of comprehensive data on the shear properties of reinforced GP‐concrete beams without shear reinforcement has hindered their widespread use, mainly due to challenges in predicting their shear performance. This study examines the influence of incorporating up to 15% waste glass powder (GP) with two separate particle size categories: GP‐A (55 to 135 μm) and GP‐B (finer than 55 μm) as a cement replacement on the 180‐day shear performance of reinforced concrete beams with varying cement content and without stirrups. To accomplish this, a total of 14 beams were used, all sharing identical dimensions measuring 200 mm × 250 mm × 2000 mm. The aforementioned parameters were investigated for their effects on the shear performance of beams, including crack patterns, modes of failure, load–deflection behavior, and strength capacities at different loading stages. Furthermore, this investigation explores the applicability of the most commonly used design codes of practice for predicting the shear strength of reinforced GP‐modified concrete beams. These codes are typically employed to design the shear strength of reinforced conventional concrete shallow beams without shear reinforcement. The study's findings indicate that the impact of GP particle size on the shear performance of beams with the same GP content is almost negligible. Additionally, the study found that incorporating GP into concrete beams does not have any negative effects on their cracking load capacity, shear strength, or flexural cracking load capacity. In fact, it can even improve the latter. A comparison of experimental results with predictions from the design codes revealed that both the CEB‐FIP (1990) equation and the ACI equations provided safe estimates of shear strength for the tested beams. However, the CEB‐FIP (1990) equation yielded predictions with a lower mean, standard deviation, and coefficient of variation compared with the ACI equations, suggesting a higher level of accuracy in its estimates. The findings affirm the suitability of GP‐concrete as a viable alternative in concrete structures specifically engineered to withstand shear forces.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3