Experimental study on the fatigue bond behavior of concrete beams reinforced with hybrid fiber‐reinforced polymer and steel bars

Author:

Xu Jiajing1,Zhu Peng23,Qu Wenjun2

Affiliation:

1. School of Transportation and Civil Engineering Nantong University Nantong 226019 China

2. Department of Structural Engineering Tongji University 1239 Siping Road Shanghai 200092 China

3. Key Laboratory of Performance Evolution and Control for Engineering Structures (Tongji University) Ministry of Education Shanghai 200092 China

Abstract

AbstractThis paper presents an experimental program of the bond behavior of concrete beams reinforced with hybrid fiber‐reinforced polymer (FRP) and steel bars, and the bond behavior between flexural cracks is investigated. Under the static loading, both the slip of steel and glass FRP (GFRP) bars increased significantly after steel yielding, while the slip of steel bars presented a faster increase rate. A method of calculating the bond stress based on test data was proposed, and this method overcame the disadvantage of histogram distribution of the conventional method. An analytical model of calculating the bond stress was proposed, and was verified with the test results. Under the fatigue loading, the bond stress deteriorated more seriously with a higher upper limit of fatigue load. The slip increased rapidly at the initial stage, and remained approximately unchanged with the increase of fatigue cycles, and the slip increased dramatically when the beam was subjected to fatigue failure. After fatigue loading, the yielding strength and ultimate strength of steel bars showed an increase rate less than 5%, while the hardening phase decreased significantly. The ultimate tensile strength of GFRP bars after fatigue decreased in the range of 4.5%–32.3%, and the modulus for elasticity remained unchanged.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Project of Nantong City

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3